
MinERS: team formation among heterogeneous

agents

James Parker, Ernesto Nunes, Julio Godoy, and Maria Gini
{jparker,enunes,godoy,gini}@cs.umn.edu

University of Minnesota, Minneapolis, MN 55455

Abstract. In order for multi-robot systems to efficiently assist in sav-
ing lives and infrastructures in the RoboCup Rescue Simulation, any
strategy designed to allocate tasks and coordinate agents must adapt
to the dynamic nature of the environment. In this work, we describe
how to form teams of agents that take advantage of synergies among the
different types of agents and we evaluate the effectiveness of the team
configuration strategies on different maps.

1 Introduction

The ultimate goal in natural disasters is to save lives, minimize injuries, and
reduce damage to infrastructures. Task allocation has to be done in an envi-
ronment with uncertainty in the location, type and size of tasks, and requires
agents to travel through unknown and possibly unsafe areas to reach the tasks.
To make things even more complex, tasks are dynamic, they appear and disap-
pear randomly (e.g., fires). All these elements make urban search and rescue a
demanding but realistic testbed.

In our work, we form teams of agents with varying degrees of restrictive
behavior using the RoboCup Rescue Simulator. We show that forming teams of
agents enhances coordination which, in most cases, increases the number of tasks
completed, without increasing communication costs substantially. For the rest
of the paper, we first compare various approaches from the literature. Then we
explain how we model individual agents and teams, describing how the different
types of teamwork are organized and the reasons for the choices we made. We
present our results and compare the strengths and weaknesses of the different
configurations. Lastly, we offer concluding remarks and ideas for future work.

2 Related Work

In [3], three ways to coordinate the agents are proposed: decentralized mutual
adjustment, centralized direct supervision, and environment partitioning. Early
approaches to task allocation in RoboCup Rescue were mostly based on central-
ized coordination, i.e. using a central unit (for example, the Police Station for
the police agents) to continuously gather information and assign tasks accord-
ingly. In this category, Sedaghat et al. [6] presented an auction based mechanism



in which all non-police type of agents make requests for blockade clearance to
the centralized coordination units, which, in combination with the Police agents,
carry a bid for each request and assign a task to the most adequate agent (where
the measure for being adequate can be customized). A problem inherent in cen-
tralized strategies is the large number of messages required for each task to be
assigned to an agent, which makes it unsuitable when a fast response is key
to achieve good performance (in terms of the metrics defined by the simula-
tion). Auction based task allocation has been improved in [2], who proposes
the use of proxies for agents during the bidding phase to reduce the commu-
nication needs, and a collaboration strategy between police and fire brigades.
The approach is distributed but still depends on a centralized unit for task re-
quests, which leaves open the possibility for further decentralization. To reduce
the single-failure-point issue and improve the robustness of the strategies, more
recent work uses decentralized approaches. LA-DCOP, a low communication dis-
tributed constraint optimization algorithm, is used by [5]. LA-DCOP is token
based and depends on an agent threshold (related to its capability). Each agent
decides whether to commit to a task or pass the token to more suitable agents.
Ferreira et al. [1] compare LA-DCOP with Swarm-GAP, which emulates insect
behavior to achieve implicit coordination. In [4] task allocation is addressed with
coalition formation, solving the problem as a distributed optimization problem
using Max-Sum, and including spatial and temporal constraints. However, the
approach is not evaluated in RoboCup Rescue.

3 Agent Description

3.1 Abstract agent

The abstract agent is a template we use to build the three agent types needed for
RoboCup Rescue. All agents inform others when they cannot move because of
blocked roads, which buildings are on fire, and where buried civilians are located.
However, due to communication limitations, only fire brigades are informed of
buildings on fire and only ambulances are informed of buried civilians. For path
planning, we use A* with a slight modification: roads that are impassable due
to blockades are given a very high cost to expand them in the search (we use
the normal total cost multiplied by 200, 000). This ensures that any reasonable
unblocked path will be explored first and if all paths are blocked, the shortest
path with fewest blocked roads will be picked. A road is classified as impassable
if the smallest choke in the road is smaller than the size of an agent, which means
an agent cannot fit through this part of the road.

3.2 Fire Brigade

Fire brigades assign to target buildings a value which is inversely proportional
to the distance and fieriness of fire:

V alt =
100

Dt × Ft

,



where V alt is the value of a target t, Dt is the distance of the agent to target t
and Ft is the fieriness of the target building t. Fires that have grown large have a
large fieriness and are much more difficult to put out, so by using this value fire
brigades will attempt to put out close fires that are small. Since the values for
distance are much larger than the one for fieriness, distance has a larger impact
on the decay of the value. Buildings that are not on fire are not assigned a value
and are not considered a target.

Once the most valuable target is identified, the fire brigade will head towards
the target building, and as soon as the building is in sight it will start extinguish-
ing the fire. Fire brigades constantly look for best targets, so if a more valuable
target appeared the fire brigade would immediately switch to it. An example is
when fire spreads to a nearby building, fire brigades will quickly put out the new
small fire before returning to the old one to ensure the fire remains contained.
The fire brigade returns immediately to the refuge to refill its water tank when
empty.

3.3 Ambulance Team

Ambulance teams select buried civilians as targets based on the value:

V alt =
100

Dt

−Bt,

where Bt is the degree of buriedness of the target t, and the other variables
are the same as for the fire brigades. Larger values of Bt mean the civilian
is buried under more rubble and will take longer to be uncovered. The values
for distance are again much larger than the ones for buriedness, so ambulance
teams will generally select the easiest to uncover target from the closest cluster of
targets. This maximizes the number of civilians who will be saved if the building
catches fire and ambulance needs to vacate. This also coordinates the effort of
all ambulances working on a cluster to uncover the same target. When a target
is unburied, one ambulance will load up the target and take it to a refuge and
the rest will go to the next most valuable target. Ambulance teams will select
new targets if a closer trapped target is spotted or reported by another agent.

3.4 Police Force

Police forces choose blocked roads as targets based on the value:

V alt =
100× It

Dt

,

where It is 1 if the road is completely impassable and decreases rapidly towards
zero, but never reaching, as the size of the smallest choke increases. This makes
police forces select roads that are impassable, even if far away, before selecting
roads that are passable but with suboptimal throughput. Once a road is selected
as a target, the police will travel to this road and clear all the blockades on the
road to make it passable again.



4 Teamwork Configurations

In this section we describe different methods we developed for teamwork. Specif-
ically, we describe the case where no team work is done (which we call ”base”),
the case where teams are created at the start of the simulation and do not change
over the run (called ”static”), the case where teams change as required by the
tasks (called ”dynamic”), and the case where the teams are split to have some
teams with ambulances and some with fire brigades (called ”split”).

4.1 No teamwork

When no teams are formed each agent acts independently as described in Sec-
tion 3 and since there is no coordination the centers do nothing. Agents freely
select the target t with the highest V alt as described in Section 3. This shows
the benefit from communicating and selecting targets by value over the sample
agent. No teamwork, called base configuration, is also the baseline we use to
compare the different teamwork strategies against.

4.2 Static team assignments

In the static team configuration, teams are formed at the start of the simulator
based on a bottom-up hierarchical clustering algorithm and do not change after
that. Each agent starts as its own cluster with the position of the agent in the
simulator. The closest pair of clusters, based on the Euclidean distance between
them, are merged and the mean position of all agents in both clusters is then
assigned as the new cluster’s position. If a merge creates a resulting cluster of
over 7 agents, then the larger cluster before the merge is considered a finished
team and is neglected from the rest of the clustering algorithm. This process
is repeated until all teams are finished or if the distance between all clusters is
too far (1, 000 meters in the simulation, about five blocks). Teams are formed in
this fashion to ensure spatial locality of the agents on the team. To implicitly
regulate agents on a team to work together, an area is formed which all agents
on that team are expected to operate in. The center of the team is (x̄,ȳ) defined
by:

x̄ =

∑
i xi∑
i 1

, ȳ =

∑
i yi∑
i 1

,

where xi and yi are the x and y coordinates of agent i, and the sum is over
all agents on the current team. The team area is then approximately a circle of
radius two blocks (400 meters in the simulator) around (x̄,ȳ), and each agent
chooses the target with maximum TeamV alt within this area as described below.
The two block distance is a heuristic used that allows a good balance between
having enough area to find suitable targets and being small enough to force
implicit cooperation.

Centers are used to keep track of where these team areas are located through-
out the simulation. Agents send their individual positions to the centers, who



then calculate the average position of the team and send it back. If team updates
are too infrequent, the center of the team moves very slowly and not much of the
city can be visited by the team. Frequent updates can cause target thrashing,
where an agent moves to a target but the target is outside the team area in the
next update. This forces the agent to select a new target and waste more time
in transit. To help reduce this problem V alt is modified by a sigmoid function
P (t) to devalue targets near the edge of the team radius:

TeamV alt = V alt ∗ P (TDt/TR),

where V alt is as described in Section 3, TDt is the distance from (x̄,ȳ) to target t
and the TR = 400 meters as the team radius described above. Team updates are
staggered and sent periodically (every 5 time steps in the simulator) to provide
low communication requirements and avoid target thrashing.

4.3 Dynamic team assignments

Unlike static teams where agents are assigned to the same team for the whole
simulation, dynamic teams allow agents to change from one team to another.
To accomplish this each agent is assigned a Utility as an approximation to the
effectiveness of that agent on the team. The Utility is increased by 4 when
interacting with a target, decreased by 1 when moving to a target or refuge, and
decreased by 2 if moving randomly looking for a new targets. To balance longterm
benefits with short term benefits, Utility is limited to the range between zero
and 100. This Utility is sent to the centers along with the normal periodic
team updates described in Section 4.2. The center then calculates three separate
average utilities per team, one for each of the agent types. If an agent type is
not on the team, the utility is set to 50. These averages are calculated separately
since some agent types may have very high utility and others very low utility.
A short-term expected utility gain method is used to determine whether it will
be beneficial for an agent to move to a different team. We defined short-term as
a time window of t = 10 simulation time steps, then the expected utility gain of
going from team j to team i would be:

Gaini,j = Ui × (t− TravelT imei,j)− Uj × t,

where Ui is the average utility of the agent on team i and TravelT imei,j is the
expected time for an agent to travel from team j to team i. The best team b
for an agent on team j to move to is then: Gainb,j = maxiGaini,j . If Gainb,j

is positive then one agent of that type with the lowest Utility on team j is
transfered to team b, via a message by the center. Only one calculation for each
agent type on a team occurs when that team is sending update messages.

4.4 Split ambulance teams and fire brigades

One drawback of the teamwork is that fire brigades and ambulance teams of-
ten have conflicting goals. Both extinguishing fires and unburying civilians are



time consuming tasks, unless the fire is just starting. This can frequently cause
agents of one type to have a very high utility while others have a very low utility.
Since police forces do not directly affect the score, they play a secondary role by
allowing the fire brigades and ambulance teams to do their tasks efficiently. To
maximize the primary agent’s utility, teams are not allowed to have both ambu-
lance teams and fire brigade teams on them. We call this the split configuration.
When ambulance teams and fire brigades are on different teams, the hierarchical
clustering is done in two repeated stages. In the first stage only fire brigade and
police force clusters are considered, and the closest two clusters are merged as
described in Section 4.2. If this merger was between a fire brigade cluster and a
police force cluster it is considered a fire brigade cluster, and the old police force
cluster must be removed from the pool of clusters available to the second stage.
The second stage considers only ambulance teams and police force clusters, and
again the closest two cluster are merged. Similarly if this resulting merger has
heterogeneous agent types, the cluster is considered an ambulance cluster and
any police in that cluster are unavailable to stage one. This round-robin hier-
archical clustering ensures that teams will be formed based on local proximity
while not allowing a team to have both fire brigade and ambulance team agents.
Utility is still tracked in the split configuration and agents can move between
teams, however fire brigades cannot move to a team with an ambulance and vice
versa. To implement this, when centers compute the expected utility gains to
transfer agents, the gains are only evaluated between teams of similar types for
the fire brigade and ambulance team agents. This is done by looking at whether
the team was a fire brigade or ambulance team during the initial formation.
Police forces are still free to transfer to any cluster and follow the dynamic team
configuration outlined in Section 4.3.

5 Results

5.1 Overall analysis

The maps and their configurations from Table 1 are from the 2011 RoboCup
Rescue Simulation League final round. As seen in Table 1 the split configura-
tion outperforms the others. The best configuration for each map is shown in
bold. The dynamic configuration does slightly worse than split, but better than

Table 1. Scores obtained by the different teaming configurations on various maps.

Sample Base Static Dynamic Split

Paris 1.57 0 0.35 1.15 2.25

Berlin 18.37 30.27 21.92 21.41 26.77

Istanbul 28.68 12.62 11.56 55.25 58.49

Kobe 64.98 54.79 54.79 76.70 81.66

VC 21.54 11.77 11.42 80.59 93.24

Total 135.24 109.46 100.06 235.10 262.41



the base and static configurations. This shows that forming teams for task co-
operation is helpful in this time sensitive search and rescue problem. Not only
does teamwork increase the efficiency of agents, but even without much specific
tweaking to the simulator, the split agent configuration places close to 3rd place
of the final round competitors.

On Paris, the split configuration is significantly different from the static and
base configurations based off a two sample t-test with 95% confidence. Unfortu-
nately since the scores are low on this map , saving an extra civilian causes a large
percentage increase in score. This results in a high standard deviation for most
configurations making conclusive results about the means difficult. The split vs.
base and sample vs. dynamic configurations were not significantly different on
Berlin, but all other pairings are different with 95% confidence. For Istanbul,
Kobe and VC only the base and static configurations were indistinguishable due
to the very similar estimated means.

Static teams do not do well because agents are not used efficiently. One
strength of static teams is attempting to rescue civilians near fires since the fire
brigades can keep the burning buildings away from ambulances long enough to
rescue civilians. The problem with this approach is that many fire brigades are on
teams with ambulance agents rescuing civilians not near fires. This inefficiency
of the fire brigades causes a vast portion of the city to burn down where teams
are not present and burns many civilians before agents become aware of their
existence.

Dynamic teams help overcome this inefficiency of agents by allowing them to
move to a team where they will be utilized more. Teams tend to accumulate one
type of agent and lose some of the opposite type. The police force are the agent
type that changes team the most frequently, due to their faster task completion
rate. Fire brigades can spend the entire simulation trying to contain a raging fire,
but the police will run out of roads to clear quickly. These unused police agents
will switch to teams that are still mobile and encountering new impassable roads.
The ability to switch teams substantially increases the average utility of agents
and as a result the dynamic configuration always performs better than the static
configuration.

The overall best configuration is the split configuration, which is inspired by
seeing a disparity in the efficiency of agents on the same team. This configuration
still retains the dynamic aspect allowing all agents to optimize their utility.

6 Conclusions and Future Work

We have shown that creating teams can exploit synergy between heterogeneous
agents and creates implicit task coordination. Restricting agents on a team to
a local area increases cooperation among agents. Additionally, since individual
agents have similar criteria for choosing targets and they are restricted to a local
area they will often select the same target producing coordinated effort among
them. We apply four different team formation strategies: no teamwork, static
teams, dynamic teams and separated ambulance and fire brigades. We compare



the various strengths and weaknesses of our configurations against the baseline
of the sample agent. Dynamic teams outperform no teamwork and the split agent
configuration outperforms dynamic teams in turn.

Work remains to be done on exploring team benefits when agents are able
to accomplish all tasks but have different specializations. Our best configuration
is the separated ambulance teams and fire brigades because police forces play a
supporting role. In the simulator an obvious choice is to split the teams up in this
manner, but how can team compositions be automatically learned depending on
agent abilities remains an open question. The choice of team radius and the time
window selection for changing team could have an impact on performance and
deserve additional investigation.

One of the benefits to having teams is the ability to react quickly to new infor-
mation as it arises. However, as the time progresses and the maps are explored,
new information becomes less frequent and this benefit is lost. At some point
agents become more effective if they work independently instead of assisting
other agents. This behavior could be treated as an explorations vs. exploita-
tion type problem, but it is unknown if there is a accurate model for various
situations.

References

1. P. R. Ferreira, Jr., F. dos Santos, A. L. C. Bazzan, D. Epstein, and S. J. Waskow.
RoboCup Rescue as multiagent task allocation among teams: experiments with
task interdependencies. Journal of Autonomous Agents and Multi-Agent Systems,
20(3):421–443, 2010.

2. M. Nanjanath, A. Erlandson, S. Andrist, A. Ragipindi, A. Mohammed, A. Sharma,
and M. Gini. Decision and coordination strategies for robocup rescue agents. In
Proc. SIMPAR, pages 473–484, 2010.

3. S. Paquet, N. Bernier, and B. Chaib-draa. Comparison of different coordination
strategies for the RoboCup rescue simulation. In Proc. Int’l Conf. on Industrial &

Engineering Applications of Artificial Intelligence & Expert Systems, volume LNAI
3029, pages 987–996. Springer-Verlag, 2004.

4. S. Ramchurn, A. Farinelli, K. Macarthur, M. Polukarov, and N. Jennings. De-
centralised coordination in RoboCup Rescue. The Computer Journal, 53(9):1–15,
January 2010.

5. P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe. Allocating tasks in extreme
teams. In Proc. Int’l Conf. on Autonomous Agents and Multi-Agent Systems, pages
727–734, 2005.

6. M. N. Sedaghat, L. P. Nejad, S. Iravanian, and E. Rafiee. Task allocation for the
police force agents in RoboCup Rescue simulation. In LNAI, volume 4020, pages
656–664. Springer, 2006.


