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Abstract. As part of the RoboCup yearly competition, participants in
the RoboCup Rescue Simulation League compete to solve a simulated
urban search and rescue problem. For the last couple of years there has
been debate about what metrics are best for selecting the competition
winners. We statistically evaluate a variety of the metrics used and pro-
pose new ones,with the objective of determining which has the most
power in determining the winner and the final rankings of the competi-
tors. We also suggest a variety of convenient changes to the competition
that would help increase the accuracy of the rankings.

1 Introduction

Robots are being deployed to solve a large variety of problems which are dif-
ficult for humans, such as wide-area surveillance, mapping dangerous caves or
exploring the bottom of the ocean. Sometimes these robots need various degrees
of autonomy and decision making if constant communication is infeasible, such
as robots with limited battery power or the robot Curiosity on Mars. Our work
focuses on the RoboCup Rescue Simulator, which simulates a disaster in an ur-
ban setting where first responders need to minimize the loss of infrastructure
and lives.

The RoboCup Rescue Simulator is developed on a large scale, where programs
must direct and coordinate up to 100 different first responders around the city.
Coalition formation is known to be NP-complete [9], even when the tasks are
known upfront. In the RoboCup Rescue Simulator, the locations of fires and
civilians are not known until an agent gets close and perceives the event. This
partial observability makes the problem much harder and can eliminate any hope
of guaranteeing a bound on performance.

Evaluating the quality of solutions is very difficult in these types of domains,
due to both the uncertainty and multiple goals. If more first responders search
and rescue trapped civilians, then this will likely reduce the amount of infras-
tructure saved. A wide variety of different algorithms have been proposed and
tested in the RoboCup Rescue Simulator, including distributed constraint op-
timization [10], auction based methods [1], partitioning of the city among the
police agents [7], and evolutionary learning [6, 2]. This provides RoboCup Rescue
with a diverse set of approaches to solve urban search and rescue which can all
be directly compared and improved upon using the simulator.



The RoboCup Rescue Simulation competition is an event held at the large
yearly RoboCup competition. In the RoboCup Rescue Simulation League simu-
lations are run for a few days, and the best agents are announced. The ranking
system for determining the winners has been questioned over the past few years
because oddities caused unintuitive winners.

In this work, we explore what causes these oddities, compare old and new
score aggregation methods, and propose new ideas on how to approach the prob-
lem to obtain a more statistically significant list of winners.

This paper is organized by first giving background on the RoboCup Rescue
simulator and describing the goals of the competition. Next, we explore some
issues using the RoboCup Rescue Simulation’s metrics to make a direct assump-
tion about the effectiveness of the solutions used by the competitors. A variety
of methods used to evaluate algorithms in the competition are compared and the
statistical power of each is evaluated. We end the paper with a review of the best
methods investigated and some proposals to reduce the risk of misclassifying the
best agents.

2 RoboCup Rescue Simulator

The RoboCup Rescue Simulator [5] was originally developed after an earthquake
devastated Kobe, Japan. RoboCup Rescue tries to recreate the effects of earth-
quake on cities by trapping civilians under rubble, igniting fires across the city
and blocking roads with rubble. Agents represented as the blue, red and white
dots in Figure 1 are police, fire trucks and ambulances respectively. Police are
able to clear the rubble off the roads to make them passable again. Fire trucks
extinguish fires and prevent the fires from engulfing the city. Ambulances are
able to dig out trapped civilians and bring them to a designated safe zone, the
orange house icon in Figure 1. Buildings on fire increase in intensity as they
turn yellow, orange and then red, and once they are completely burnt out and
destroyed they turn black.

Communication is integrated into the RoboCup Rescue Simulator through
both unlimited range transmission channels and local range shouting. The unlim-
ited range transmission simulates radio channels, agents have to subscribe to a
specific channel and then can only hear and send on that channel. The local voice
communication does not require subscription, but both the long range channel
and short range vocal have a simulated probability of transmission failure. There
are two types of failures, either the whole message is lost or the message is sent
to only a portion of people able to hear the message. Another limitation is that
the long range channels have a fixed bandwidth, and if too many messages are
sent some will be dropped.

As part of the yearly RoboCup competition, over a dozen teams develop
competitive algorithms for agents to solve the urban search and rescue problems.
These algorithms are tested against various map configurations over the course
of a few days, split up into three elimination rounds: preliminaries, semi-finals



Fig. 1: The Paris RoboCup Rescue Simulation map.

and finals. At the end of each of these rounds, the lowest agents are dropped
from the competition and all the scores are reset for the next round.

The score of each competitor at any time is computed as:
√
BD × (CA+ CH), (1)

where BD is the average percent of health of all buildings in the city, CA is
the number of civilians alive and CH is the average percent health of civilians.
During the simulation, there is no way to fix buildings or heal civilians, so the
score is monotonically decreasing over time. Thus, the goal of the agents is to
prevent the score from decreasing as much as possible. Police, who clear rubble
to make roads passable, do not directly contribute to the score, yet are crucial for
ambulances reaching damaged parts of the city and fire trucks having efficient
paths to refill water. Due to the multiplication in the scoring function, it is
important to balance both saving the city’s infrastructure and rescuing civilians.

3 Scoring Issues

The score for a single competitor on a map is a good indication of performance,
but when comparing multiple competitors some interesting issues can arise. Map
configuration (and sometimes luck) can have a large impact on the score and the
degree of score variation. This makes it harder to determine the real effectiveness
of the algorithms of the different competitors without running a large number
of games. In this section we explain cases when the score might not be a correct
indicator of the efficiency of the algorithms used by a competitor.



Fires have a large impact in the RoboCup Rescue Simulator because they
not only destroy buildings, but rapidly damage civilians and can be difficult
to contain and extinguish. Although both civilian and buildings are accounted
for in the score, the fires can have a detrimental unidirectional effect on saving
civilians. In other words, if the fire trucks are inefficient and do very little to
prevent the spread of fire, the ambulances will have a much harder time rescuing
civilians because many will perish to fires before they can be reached. However,
if ambulances are not rescuing civilians efficiently, the fire trucks’ ability to
extinguish fires is unchanged.

To compound the fire’s effect on the score, completely extinguishing a fire
becomes much more difficult as the number of burning buildings grows. This
matter is made even more difficult by the partial observability in the scenario. A
fire might grow a considerable amount before it is even noticed. Fires located in
sections of the city which are surrounded by impassable roads can be especially
difficult to deal with. These conditions can make the score very sensitive to a
number of factors, such as the number of fire trucks, locations of fire, and road
conditions.

An example of this is shown in Table 1, where the number of agents was ad-
justed on the same map (Mexico2) for four different competitors. Each program
was run five times and the mean score computed. All competitors suffer greatly
when going from 80 agents to 60 agents, but GUC ArtSapience and Poseidon
also suffer considerably more than S.O.S. when the agents are reduced from 100
to 80. These ranges provide the best comparison between different solutions’
efficiencies, since agents can be fully utilized and have a large effect on the score.

Table 1: Scores of various competitors when agents are added or removed.

Total number GUC ArtSapience MRL Poseidon S.O.S.

of agents

160 268.31 271.85 269.66 272.01

140 266.67 270.49 258.18 272.11

120 256.94 251.52 245.29 269.00

100 221.63 230.83 207.05 255.66

80 160.79 182.72 140.87 211.74

60 60.63 55.73 50.21 80.88

40 48.05 47.93 47.01 47.21

Another issue highlighted by Table 1 is that at very high or very low number
of agents, the map becomes too easy or too difficult respectively. When there
are too many agents, there are not enough problems in the city to fully utilize
all the agents, and this normalizes the scores between competitors. If the map
configuration is too hard then all competitors score poorly causing the city to
burn down for both the best and worst competitors.



Fig. 2: Score time series of all agents run separately on a difficult Mexico City
configuration.

(a) (a) (b) (b)

Fig. 3: Final world states for the highest (a) and lowest (b) scoring competitors
on a Mexico City map (Mexico2).



An example is highlighted on the Mexico City map in Figure 3 by showing
many black burnt out buildings and expired civilians as black dots with green
borders in both the best algorithm and the poorest. The scores of all eight
competitors can be seen dropping together in Figure 2, causing all competitors
to receive poor scores at the end. Since the RoboCup Rescue Simulation League
is run as a competition, maps are created beforehand and without knowing the
effectiveness of algorithms. Some maps with uninformative scores are inevitable,
but these should not affect the overall results.

Another effect of fires is that their growth can create a bimodal distribution
on the scores, separating competitors that were able to contain fires and those
that were not. While there is no doubt that the competitors that contained the
fires are better than those that did not, fire growth has such a compounding effect
that the score differences might not be indicative of the efficiency differences.
Figure 5 shows how the competitors are clearly separated into two groups and
the fires cause a large difference in the scores. The worst competitor in the top
group and the best competitor in the lower group are showed in Figure 5 (a) and
(b), respectively. The difference in score between being able to control the fire in
the center of the city and not is more than threefold between these agents, but
this does not imply that the capability difference of these competitors is threefold
in general. Fires grow exponentially [8] and are much more difficult to contain
and extinguish the larger they get, but it is not effective to use all the fire trucks
to extinguish a single fire because new fires, easy to extinguish, might start up
unchecked and old fires also have a chance of reigniting. Therefore, agents must
balance prioritization of large fires that require many agents to control with the
discovery of small fires which can be rapidly extinguished by a single agent.

Fig. 4: A bimodal distribution of scores on a Eindhoven map.



(a) (a) (b) (b)

Fig. 5: The 4th and 5th best competitors, GUC ArtSapience (a) and MRL (b),
on a map of Eindhoven.

Many algorithms have probabilistic models built into them, so the variance
of scores on the same map with the same configuration can be rather large.
Table 2 and Table 3 show how on the “Paris4” map the standard deviation
is practically half the estimated mean. This large variance is often due to the
bimodal nature of whether the algorithm is able to contain the fires or not. In
the competition, each map is only run once and as seen in “Paris4” in Table 2,
the value generated at that single run can be substantially different than the
algorithm’s average performance.

4 RoboCup Rescue Point Assignments

Different maps have different numbers of civilians and buildings, which changes
the range of scores available on that map. This makes it necessary to aggregate
the scores across maps in a non-trivial way, since the value of the score across
maps is not comparable. For example, if a competitor scored 10 on a map, it is
unknown if this is a good score or not. If the map had only 10 civilians, then the
score would start at 11 and would have only decreased to 10, suggesting that
this competitor is quite good (or the map was easy). However, if the map had
300 civilians, then a score of 10 would be quite abysmal with almost all the city
burnt down, almost all the trapped civilians perished or both.

A simple aggregate of the score would put more weight on maps with more
civilians, which would give an unfair advantage to approaches that perform well
in densely populated cities. The RoboCup Rescue Simulator committee has been
aware of this fact, and placed ranks on algorithms for each map and then de-
clared the winner the competitor with the highest summed rank. Recently, the
competition committee has decided to move to a parametric model for determin-
ing winners under the assumption that more powerful conclusions can be drawn
by utilizing the value of the scores. The term “score” refers to the performance
of a single competitor on a single map as measured by Equation 1, while the



Table 2: Multiple trials of the Ri-one competitor.

Map Kobe4 Berlin5 Eindhoven4 Eindhoven5 Istambul3 VC4 Paris4 Mexico3

Trial 1 38.769 31.334 4.064 39.212 0.391 5.955 29.917 34.591

Trial 2 58.979 26.629 3.597 40.333 0.37 7.191 58.001 31.848

Trial 3 48.794 28.231 3.984 38.511 0.369 4.885 11.013 31.841

Trial 4 57.26 26.676 3.918 39.862 0.366 5.702 22.336 31.849

Trial 5 35.148 27.558 3.98 39.878 0.366 5.337 25.808 31.836

Trial 6 46.616 25.326 3.962 39.987 0.368 5.512 22.132 31.854

Trial 7 54.38 25.661 3.862 39.988 0.366 6.001 56.443 31.847

Trial 8 59.524 27.818 3.765 42.067 0.366 4.749 29.61 31.841

Trial 9 54.554 23.795 3.875 38.082 0.37 4.983 20.026 31.849

Trial 10 42.805 33.831 3.962 39.324 0.367 4.384 24.775 31.841

Average 49.6829 27.6859 3.8969 39.7244 0.3699 5.4699 30.0061 32.1197

Stand. dev. 8.656 2.950 0.133 1.087 0.008 0.805 15.308 0.868

Competition
score

47.350 36.500 4.138 39.155 0.391 6.385 9.614 33.021

term “points” refers to the value assigned to algorithms on maps to make scores
across maps comparable. The rank of competitors is determined by summing up
the points across all maps, so higher points correspond to a higher rank.

To analyze the effectiveness of different point metrics, we will compare the
scores from the RoboCup Rescue Simulation League 2013 competition under the
various metrics we present. We will evaluate the statistically significant informa-
tion provided by each point metric and estimate the number of games needed
to fully differentiate between all competitors. For the ranked point metric, the
Friedman [4] test is performed in conjunction with the Wilcoxon signed-rank
test [11] due to the nonparametric nature. The other point metrics are eval-
uated with the common ANOVA [3] and Student’s t-test. This will show the
power of these point metrics and help decide which will be most beneficial to
use.

Typically, the RoboCup Rescue Simulation League competition uses three
rounds of elimination: a preliminary, semi-final and final round. At each round
some of the agents are eliminated in a typical sport playoff. Scores are gener-
ated in a non-competitive manner because other competitors do not influence
anyone else score, unlike most sport competitions where the opposing team has
a significant effect on the score of a competitor. For this reason when evaluat-
ing statistical significance we will use data from all rounds of the competition
instead of a single round to increase the number of data points.

In the 2013 RoboCup Rescue Simulation League competition, the top four
competitors in descending order are:

Rank in the competition
GUC ArtSapience; S.O.S.; MRL; Poseidon.



Table 3: Multiple trials of the MRL competitor.

Map Kobe4 Berlin5 Eindhoven4 Eindhoven5 Istambul3 VC4 Paris4 Mexico3

Trial 1 89.412 15.057 3.327 35.686 0.34 4.371 6.246 31.847

Trial 2 68.112 14.542 3.327 34.316 0.34 4.259 6.249 31.847

Trial 3 80.046 15.296 3.417 34.308 0.34 4.37 6.531 31.847

Trial 4 92.253 14.357 3.417 34.314 0.34 4.482 18.289 31.847

Trial 5 82.096 14.98 3.327 35.015 0.34 4.371 8.379 31.847

Trial 6 91.234 15.007 3.327 35.575 0.34 4.482 7.26 31.847

Trial 7 75.927 14.422 3.327 34.334 0.34 4.483 16.749 31.847

Trial 8 77.909 16.082 3.327 35.517 0.34 4.259 9.118 31.847

Trial 9 91.747 14.357 3.327 34.36 0.34 4.371 7.135 31.847

Trial 10 90.723 14.806 3.417 35.153 0.34 4.482 7.631 31.847

Average 83.9459 14.8906 3.354 34.8578 0.34 4.393 9.3587 31.847

Stand. dev. 8.359 0.532 0.043 0.593 0.000 0.088 4.411 0.000

Competition
score

93.882 14.16 2.861 37.216 0.361 5.529 10.085 32.058

GUC ArtSapience’s victory is primarily due to a low number of games and
an outlier simulation. There were only six simulation trials for the final round,
and on one of them GUC ArtSapience received four times as many points as
the second place competitor. The score of GUC ArtSapience was indeed much
higher in comparison to other scores, but if we removed this game the descending
order of competitors is:

Rank removing one final game
S.O.S.; MRL and GUC ArtSapience (tied for second); Poseidon.

If the points for all the rounds are included, as we do in our analysis, then
the order will be:

Rank using points
S.O.S.; MRL; GUC ArtSapience; Poseidon.

This is the order of competitors most commonly seen with the point systems.

4.1 Scoring using competitor ranking in each round

The RoboCup Rescue Simulation League used a rank sum to determine the
winners until the 2012 competition. The strengths of using a ranked scheme is
that very few assumptions need to be made out of the data. Specifically, when
computing the statistical significance of results, there is no need to test the
normality of residuals or the homoscedasticity.

However, using the ranked method does ignore the scale of scores within a
map, which can lead to some unsettling results. For example, an algorithm can
only slightly outperform a competitor on a little over half the maps, but lose



horribly on all the other maps. With ranked aggregation this algorithm would
perform better since it ranked higher, but from an intuitive perspective it seems
that the competitor practically tied half the games and had significant winning
margins on others and thus should win.

When evaluating all games, a rank sum aggregate rates competitors in de-
scending order as:

Rank ranked sum
S.O.S.; MRL; Poseidon; GUC ArtSapience.

Using the Friedman test, the χ2 critical value found was 6.477, giving a p-
value of 0.91. Such a high p-value indicates that the rankings are very likely to
have been generated by chance. This means that even with 23 games between
all rounds, it is very hard to tell if any of these algorithms actually performs
differently. We went ahead and analyzed the pair-wise differences between algo-
rithms using the Wilcoxon signed-rank test, despite having an elevated type I
error. The p-values are displayed in Table 4. We can see that the S.O.S.-Poseidon
pair of competitors has a statistically significant difference in scoring ability, and
later tests confirm this pairing as significant, so it reduces the chance that this is
a type I error. The S.O.S.-GUC ArtSapience pair is also possibly different, since
it is close to the 95% confidence level. However, for the other point methods the
p-value is not nearly as close to 0.05 so it might be best to make no assumptions
without further data. Assuming the data has a similar pattern of differences, it
would take about 2500 simulations to reach a point where the competitors could
all be differentiated with reasonable confidence.

Table 4: The p-value for pairwise comparison using ranking.

S.O.S. MRL GUC ArtSapience Poseidon

S.O.S. 0.233 0.06 0.025

MRL 0.847 0.462

GUC ArtSapience 0.694

Poseidon

4.2 Normalized Points

As explained in Section 4, aggregating the scores directly is infeasible since
the range of possible scores vary based on the map configuration. A simple
transformation to make the scores comparable is to divide by the initial score,
the maximum of each map, thus turning the score into a percent:

Pointsi =
Scorei

InitialScore
.



This will reflect the percent of initial score the competitor managed to keep,
which will have the side effect of giving more points to all agents on easier maps
and fewer points to all competitors for harder configurations. Although these
easy maps will make a larger difference in the point total, since all competitors
will receive a similar amount on hard or easy maps what matters is the difference
between competitors and not any points all of them receive together.

One issue is that the points will not reflect the capability difference in algo-
rithms. For example on an easy map if algorithm A scores 0.95 and algorithm
B scores 1.00 then the point difference will be 0.05 and indeed algorithm B is
about 5% better. However, if algorithm A scores 0.05 and algorithm B scores
0.10, the difference is still 5% but algorithm B performed twice as well. We could
remove this inflation on the points by removing the shared scores as such:

Pointsi =
Scorei −minj(Scorej)

InitialScore
,

where minj(Scorej) is the score of the worst competitor. We will look at a similar
transformation in Section 4.4 and discuss the differences there.

Using this normalized point method across all maps, the best estimate for
the algorithms’ performances in descending order is:

Rank using normalized points
S.O.S.; MRL; GUC ArtSapience; Poseidon.

When using ANOVA to find our confidence in this ordering we must ensure
the homoscedasticity of variance, which was tested with Levene’s test. We found
a p-value of 0.0054. This is well below the 5% confidence coefficient and means
the variances are not equal and the results of ANOVA cannot be guaranteed.
Ideally in this situation we would want to move to non-parametric tests, as we
did in Section 4.1. Instead we will continue on and view our results of the paired
Student’s t-test shown in Table 5 skeptically, although the Central Limit The-
orem does help strengthen these results due to the sample size of 23. We see
that again there is a significant difference observed between the performance
of S.O.S. and Poseidon. However, many of the other confidence levels are very
low, especially between MRL and GUC ArtSapience. If the scores continue in
a similar pattern, we estimate it would take around 90000 simulations to con-
fidently rank the ability of these four competitors. This is many more games
required than the simple ranking method which uses less information, which
shows the transformation from score to points must do more than simply make
scores comparable.

4.3 Scaled Points

For the RoboCup Rescue 2013 competition, the committee decided to use a
scaling approach off the best competitor to normalize scores between maps.
In this approach, the best algorithm receives a fixed number of points and all
other competitors receive points so that the ratio between the best competitor’s
score and theirs is approximately proportional to their ratio of points. A simple



Table 5: The p-value for pairwise comparison using normalized points.

S.O.S. MRL GUC ArtSapience Poseidon

S.O.S. 0.238 0.131 0.031

MRL 0.966 0.394

GUC ArtSapience 0.322

Poseidon

example would be if algorithm A scored 10 and 20 on two maps respectively and
algorithm B scored 15 and 15. Suppose the fixed point amount for the winning
algorithm is 100, then the points assigned to algorithm A would be 67 and 100,
while algorithm B would receive 100 and 75 points respectively. Formally, the
points for algorithm i can be computed as the following formula on a map:

Pointsi = MaxPoints× Scorei
maxj(Scorej)

, (2)

where MaxPoints is the fixed amount of points for the winning algorithm and
maxj(Scorej) is the score of the winning algorithm.

In addition to the issues with the 2013 point method outlined in Section 4,
points were forced to be a whole number without ties and the fixed point amount
was too small. The whole number round from the example in the previous para-
graph does not look bad since algorithm A receives 67 instead of simply 66.666.
When the fixed number is much lower and there are more algorithms, the dis-
cretization and lack of allowing ties can cause the points to become skewed. If
algorithm A, B, C and D score 100, 98, 96 and 70 respectively with only a fixed
winning amount of 10, then the algorithms would be awarded 10, 9, 8 and 7
points respectively. Both algorithms B and C are not awarded as many points
as they should have, and from the point breakdown it seems algorithms D and
C scored much closely than they actually did.

This is a very preventable problem by simply not restricting points to whole
numbers or making the fixed winning amount a large whole number. For our
experiments, we simply used the scaled point method outlined in Equation 2 and
allowed real numbers to reduce errors from discretization. The best competitors
in descending order using this scoring are exactly the same as the normalized
point system from Section 4.2:

Rank using scaled points
S.O.S.; MRL; GUC ArtSapience; Poseidon.

In the 2013 competition considering just the final six simulations gave the
ordering:

Rank using final games only
GUC ArtSapience; S.O.S.; MRL; , Poseidon.

If real numbers are used instead of the non-tied whole numbers and also
considering just the final games, the best ordering of competitors is:



Rank using real numbers
S.O.S.; GUC ArtSapience; MRL; Poseidon.

While most orderings place GUC ArtSapience below MRL, this does rank
S.O.S. as first where it is positioned in all orderings using the full 23 simulations.

The Levene’s test also had a low p-value of 0.0294, so we are unable to
trust the power from ANOVA. Again, in this case we should perform the tests
from Section 4.1 instead of continuing with parametric tests, but we will for
speculation. Table 6 shows that again there is a significant difference between
S.O.S and Poseidon without being able to draw any other definitive conclusions.

Table 6: The p-value for pairwise comparison using scaled points.

S.O.S. MRL GUC ArtSapience Poseidon

S.O.S. 0.328 0.248 0.029

MRL 0.945 0.437

GUC ArtSapience 0.447

Poseidon

If the scores followed a similar pattern, it would take approximately 40000
simulations to reach a high level of confidence in our ranking of competitors.
While this is still a very high number, it is less than half of the 90000 simulations
required for the normalized point system from Section 4.2. This large reduction
can be attributed to the normalization between easy games and hard games,
because the points are not scaled on the maximum possible points but instead
the maximum achieved points by the competitors. This time when algorithm A
gets 95 and 5 points on two maps and algorithm B gets 100 and 10 respectively,
algorithm B will get many more points on the second map due to the large
relative difference between scores.

4.4 Normalized Scale

This year, the RoboCup Rescue Simulator committee decided to score the 2014
competition with the following method:

Pointsi =
Scorei −minj(Scorej)

maxk(Scorek)−minj(Scorej)
.

This is a mix of both the normalized and scaled method from Sections 4.2 and 4.3
because it forces the range of points to be between 0 and 1 and guarantees that
both 0 and 1 will be scored. There is one exception when all agents have exactly
the same score, then the denominator is 0 and this game will simply be dropped
from consideration. In this point system the best algorithm is always given 1
point and the worst algorithm is given 0, with the remaining algorithms making
a line between these two.



The Levene’s test this time gives p = 0.069 and we assume that the variances
are similar enough to proceed with parametric tests. ANOVA gives a p-value of
0.488 which means it is unable to say that one algorithm is different from all
others. The Student’s t-test shown in Table 7 for all pairs is weaker than all
the pairwise comparisons, because the S.O.S.-Poseidon pair is not statistically
different this time. This might imply that the previous parametric comparisons
yielded a type I error as the failure of Levene’s test did not guarantee the results.
The Wilcoxon signed-rank test also had an elevated type I error due to running
the test on a family of pairs, but since the S.O.S.-Poseidon pair has always
had the lowest p-value this is still the most different results we can find. If we
project that a similar scoring pattern (will be used), then this point system will
take around 1500 simulations to confidently order the algorithms. This is the
fewest expected simulations needed, with the ranked scheme as the next closest
at around 2500 simulations. Similarly to all other parametric point systems, the
ordering for best algorithms is:

Rank in competition
S.O.S.; MRL; GUC ArtSapience; Poseidon.

Table 7: The p-value for pairwise comparison using both normalized and scaled
points.

S.O.S. MRL GUC ArtSapience Poseidon

S.O.S. 0.608 0.352 0.107

MRL 0.741 0.363

GUC ArtSapience 0.464

Poseidon

5 Conclusions

From the point systems investigated, the ranking and the proposed 2014 compe-
tition from Sections 4.1 and 4.4 are most appealing. Although it is doubtful that
enough simulations can be run to reach statistical significance, both these ap-
proaches require significantly fewer trials and will provide more confidence in the
estimated algorithm order. Unfortunately these two methods estimate different
orderings of algorithms, although none of the algorithms have strong evidence of
being different than the others. Our investigation also shows that discretization
should be avoided by using either large whole numbers or real numbers when
representing points in parametric approaches.

One easy way to increase the number of simulations would be to utilize the
data from previous rounds as we did, because the algorithms do not interfere
with each other’s scores. While this RoboCup Rescue Simulation League is part



of RoboCup, which utilizes sport elimination techniques to help create excite-
ment and interest in the competitions, using all the finalist’s data to determine
the top four rankings will not interfere with the round scheduling or elimina-
tion process. Some competitors change their algorithms between the rounds, and
from a statistical point of view this will cause technical issues, but unless there is
a devastating bug their score distribution probably will not change significantly.
Competitors who do have devastating bugs normally get eliminated so aggregat-
ing earlier should not penalize competitors any more than the system already in
place.

Another way to increase games without drastically changing the structure
of the competition would be to run each algorithm on each map multiple times
instead of just once. This would help reduce the variation of algorithms within
a single map to give a more accurate estimation of its true effectiveness. Active
simulations are shown on monitors, but the extra simulations could be run on
clusters not connected to the monitor. Although it might be unrealistic to reach
statistical significance during the few competition days, it would be helpful to
aggregate enough games so that the ordering of competitors does not change
when any single game is excluded from the counted set.

Analysis of statistical significance can still be used even if the exact ordering
of all algorithms is unclear. For the elimination rounds instead of cutting in a
semi-arbitrary way the amount of competitors each round, only agents that are
significantly behind could be dropped. If the top four estimated competitors are
put into an equivalence class, then if any of the other competitors is pairwise
statistically worst than all four of these competitors they will be eliminated
at the end of the day. This could very easily work for the preliminary round,
but there might be more than four agents left in the final round that are not
statistically different.
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